

ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION

MINOR

Subject: Cement Science

w.e.f. AY 2023-24

COURSE STRUCTURE

Year	Semester	Course	Title of the Course	No. of Hrs /Week	No. of Credits
	II	1	Geology and Mining of Limestone	3	3
			Geology and Mining of Limestone Practical Course	2	1
П	III	2	Size Reduction and Pre-homogenisation	3	3
			Size Reduction and Pre-homogenisation Practical Course	2	1
	IV	3	Fuels and Firing Systems	3	3
			Fuels and Firing Systems Practical Course	2	1
		4	EIA and EMP of cement plant	3	3
			EIA and EMP of cement plant Practical Course	2	1
III	V	5	Pyro process in Cement Industry	3	3
			Pyro process in Cement Industry Practical Course	2	1
		6	Special Cements and Performance of Cement	3	3
			Special Cements and Performance of Cement Practical Course	2	1

Theory Credits: 3 3 hrs/week

Learning Objectives:

- 1. To impart and inculcate the basic geological knowledge to students
- 2. Create awareness in students about the Earth's environment, critical issues and need for sustainable development.
- 3. The course will help the students to exhibit an improved understanding of fundamental petrologic processes and common rock types and their occurrences.

II Learning outcomes:

Students after successful completion of the course will be able to...

- 1. Classify geological limestone origin in India.
- 2. Analyse cement grade limestone properties.
- 3. Describe geological exploration process.
- 4. Explain 3 mining equipment.
- 5. Apply environmental protection plans.

III Syllabus: (Total Teaching Hours : 45)

Unit I Stratigraphy & Geology of Limestone

9 Hrs

- 1. Indian stratigraphy. Types of rocks: Igneous, sedimentary and metamorphic rocks.
- 2. Structural geology Fold, Fault, Joint, Unconformities
- 3. Origin & formation of calcareous rocks

Unit II Distribution and Characteristic of Cement Grade Limestone

8 hrs

- 1. Physical and chemical characteristics of Limestone. Petrographic study of limestone.
- 2. Classification of cement grade limestone deposits.
- 3. UNFC classification of limestone deposits.

Unit – III Exploration and Deposit Evaluation

9 hrs

- 1. Phases of Geological Exploration with reference to limestone deposits.
- 2. Geological Mapping, Preparation of Geological Maps and section, Surveying, Sampling practices.
- 3. Recoding of Exploration Data, Methods of Reserve estimation.

Unit- IV Mining of Limestone

10 hrs

- 1. Surface mining, method of mining of limestone deposits.
- 2. Estimation of block size and bench height, estimation of block wise bench wise grade and tonnage, Selection of mining equipment (Excavator, Dozer, Dumper etc.)
- 3. Blasting techniques, types of explosives used, Uses of explosives, Mine production scheduling and planning. Advance methods of limestone mining,

Unit V Environment around Mines

- 1. Blasting and resultant vibration, controlled and sequential blasting.
- 2. Ecological and environmental conditions around limestone mines, plantation, roads, water bodies, social forestry and safety measure Management Techniques.
- 3. Concept of clean development mechanism, Environmental Impact Analysis (EIA) and Environmental Management Plan (EMP). Brief idea about PL and ML application.

COURSE 1: GEOLOGY AND MINING OF LIMESTONE

Practical Credits: 1 2 hrs/week

IV.Skills Outcomes:

On successful completion of this practical course, student shall be able to:

- 1. Handle the Muffle Furnace
- 2. Acquire skill on reverse titration methods
- 3. Develop filtration techniques.
- 4. Perform volumetric analysis
- 5. List 3 oxides in limestone

V. Practical Syllabus: Hours: 30. (2 Hrs/ Week)

- 1. Determination of Loss on ignition
- 2. Estimation of Carbonates of Limestone
- 3. Determination of Insoluble matter in Limestone
- 4. Determination Calcium oxides in Limestone by volumetric method
- 5. Determination total oxides in Limestone (Al2O3, Fe2O3, MgO)

VI. References:

- 1. Text Book of Geology: P K Mukherjee
- 2. Chemistry of Cement and Concrete: F M Lea, Arnold, London
- 3. A Hand book on Surface Mining Technology: Samir Kumar Dash, Sagar prakashan, Khargpur
- 4. Cement Data Book: W. H Duda, Verlag G m Bh, Berlin.
- 5. Norms for limestone exploration for cement manufacture: NCCBM

- 1. Field work
- 2. Mines visit
- 3. Assignments on aspects of syllabus
- 4. Individual student seminars
- 5. Preparing Charts

SEMESTER-III

COURSE 2: SIZE REDUCTION AND PRE-HOMOGENIZATION

Theory Credits: 3 3 hrs/week

I Learning Objectives:

- 1. Understand the principles, Laws and methods of size reduction
- 2. Describe various size reduction equipment's and their efficiencies
- 3. Focus on the importance of the Blending and Homogenizing process.

II Learning outcomes:

Students after successful completion of the course will be able to...

- 1. Describe 5 different screening equipment
- 2. Calculate size reduction energy requirements
- 3. Determine 4 crushers
- 4. Execute Air separators operational procedures
- 5. Interpret 4 clinker stacking methods

III Syllabus: (Total Teaching Hours : 45)

Unit I Particle Size Analysis

9 hrs

- 1. Sieve analysis, Cumulative and fractional plot, size distribution, size averaging and equivalence, size estimation in sub-micron range
- 2. Optimum sizes at various stages from extraction from mines. Influence of size fraction on reactivity of limestone
- 3. Screening equipments such as grizzlies, stationary, vibrating, curved and DSM screens & screen capacity

Unit II Size Reduction

9 hrs

- 1. Laws of size reduction -Bond's law, Rittinger's law & Kick's law, Working Index. Crushing efficiency
- 2. Size reduction machinery crushers by application of compression such as Jaw crusher, gyratory crushers, roll crushers, cone crushers
- 3. Size reduction machinery crushers by impact such as Impact crushers and Hammer mills

Unit – III Size Classification and Separators

9 hrs

- 1. Storage of Solids: Bins, silos, hoppers & feeders; storage of raw materials in piles
- 2. Size Classification and Air Separators: Methods of size classification, principles of air separators and different types of air separators used in cement manufacturing
- 3. Wet classification: hydro-cyclones, cyclone material balances in open circuit and closed circuit operations & separating efficiency.

Unit- IV Blending & Pre-homogenization

- 1. Preparation of cement raw meal as per raw mix design, combined & segregated prehomogenization, Methods of pre-homogenisation.
- 2. Types of homogenisation silos: discontinuous batch homogenisation silos, continuous overflow homogenizing silos, continuous homogenizing silos.
- 3. Stacking of blending beds namely in longitudinal & circular stockpiles system & their comparison.

Unit V Stacking Methods

- 1. Stacking of blending beds, Chevron method , Windraw method , Areal stock piling , Axial stock piling , continuous stock piling .
- 2. Alterative stock piling Equipments used for reclaiming material from stockpiles such as scraper, bucket wheel, bucket wheel with slewing boom and drum re-claimers.
- 3. Blending bed theory: batch & continuous homogenization; Fuller's one- eight blending method.

SEMESTER-III

COURSE 2: SIZE REDUCTION AND PRE-HOMOGENIZATION

Practical Credits: 1 2 hrs/week

IV.Skills Outcomes:

On successful completion of this practical course, student shall be able to:

- 1. Perform Sieve Analysis
- 2. Operate Jaw Crusher
- 3. Handle Crushing rolls
- 4. Calculate Critical Speed of Ball Mill
- 5. Maintain Grinding Bed of VRM

V. Practical Syllabus: Hours: 30. (2 Hrs/ Week)

- 1. To carry out differential and cumulative screen analysis of solid particles.
- 2. To study performance of Jaw Crusher and find out its crushing efficiency.
- 3. To study performance of Crushing Rolls and find out its crushing efficiency.
- 4. To study performance of Ball Mill and find out its crushing efficiency.
- 5. To study performance of Vertical Roller Mill and find out its crushing efficiency.

VI. References:

- 1. Cement Data Book: W. H Duda, Verlag G m Bh, Berlin
- 2. Cement Engineers Hand Book: Labhaanand Kolhaans
- 3. Operational Norms for cement plant: NCCBM publication
- 4. Introduction to the Principles of Size Reduction of Particles by Mechanical Means By Richard R. Klimpel
- 5. Size Reduction of Divided Solids, Author: Jean-Paul Duroudier

- 1. Quiz
- 2. Review analysis
- 3. Group discussions.
- 4. Seminars
- 5. Assignments

COURSE 3: FUELS AND FIRING SYSTEMS

Theory Credits: 3 3 hrs/week

I Learning Objectives:

- 1. Understand solid, liquid and gaseous fuel properties, analysis, process and handling.
- 2. Use simple symbol equations to explain combustion reactions and calculate theoretical air requirement for combustion.
- 3. Apply the knowledge for flame stabilization in various types of industrial burners.

II Learning outcomes:

Students after successful completion of the course will be able to...

- 1. Differentiate fuels
- 2. Analyze Flue gas
- 3. Choose appropriate fuel for 3 types of firing systems.
- 4. List safety precautions
- 5. Classify lubricants

III Syllabus: (Total Teaching Hours : 45)

Unit I Introduction to fuels

9 hours

- 1. Type of fuels, Coal, Lignite, Oil and Natural Gas.
- 2. Geological Origin and distribution of coal, Lignite and Oil and Natural gas. Distribution of coal and lignite deposits in India.
- 3. Introduction to alternative fuels for cement manufacture.

Unit II Characteristics of Fuels

9 hours

- 1. Physical characteristics of different types of fuels and Chemical characteristics of different types of fuels, Ultimate and Proximate analysis of coal.
- 2. Calculation of theoretical air requirement, preparation and handling of fuel, safety hazards.
- 3. Flue gas analysis, Otto Halfmann's byproduct Oven method, Preparation Coke from Coal

Unit III Firing System – I

9 hours

- 1. Introduction to various types of firing systems in cement plant, their advantages and disadvantages.
- 2. Coal Firing System: Introduction, classification, selection criteria for coal firing.
- 3. Pulverized coal ash flame, Pulverized coal ash burner.

Unit IV Firing System - II

- 1. Oil Firing System: Introduction to Fuel oil, Fuel Oil transport and storage, Fuel oil Atomization, Fuel oil Burners, Control loops in fuel oil plant.
- 2. Gas firing System: Natural gas, Natural gas preparation, Natural gas burners, Flame adjustment, safety precautions.
- 3. Production and Characterization of Alternative Fuels, Performance and Emission Characteristics, Future Scope.

Unit V Flames and Burners

- 1. Introduction, types of flame, flame characteristics, flame adjustment, flame momentum, Secondary firing and pre-calcinator, Combustion Indications.
- 2. Burners, types of burners, application
- 3. Lubricants- Classification, Characteristics and Applications

COURSE 3: FUELS AND FIRING SYSTEMS

Practical Credits: 1 2 hrs/week

IV.Skills Outcomes:

On successful completion of this practical course, student shall be able to:

- 1. Analyze the moisture in coal
- 2. Determine volatile matters
- 3. Handle the furnace
- 4. Estimate fixed carbon in fuel
- 5. Calculate Gross Calorific value

V. Practical Syllabus: Hours: 30. (2 Hrs/ Week)

- 1. Determination of Moisture content of Coal
- 2. Determination of Volatile Matter present in Coal
- 3. Determination of Ash Content present in Coal
- 4. Determination of Fixed Carbon present in Coal
- 5. Determination of Gross Calorific Value of Coal

VI. References:

- 1. Fuels and combustion: Samir Sarkar, New Delhi Reference Books:
- 2. Firing System: Process Technology: Cement Seminar, Holderbank
- 3. Flame & Burners: Process Technology: Cement Seminar, Holderbank.
- 4. Refractory Lining of Cement Kiln System : Process Technology: Cement Seminar, Holderbank
- 5. Cement Data Book: W. H Duda, Verlag G m Bh, Berlin.

- 1. Assignments
- 2. Seminars
- 3. Cement Industry visits
- 4. Industry experts interaction
- 5. Review Analysis

COURSE 4: EIA AND EMP OF CEMENT PLANT

Theory Credits: 3 3 hrs/week

I Learning Objectives:

- 1. Understand the importance of Social Impact Assessments and public participation in the EIA process.
- 2. Identification of mitigating strategies, such as prevention and control, for each environmental component, as well as a restoration and resettlement strategy.
- 3. Describe all monitoring procedures required to identify environmental impacts.

II Learning outcomes:

Students after successful completion of the course will be able to...

- 1. Check water quality
- 2. Utilize 5 techniques to control pollution
- 3. Understand impacts of Cement plant on Environment
- 4. Demonstrate 6 Environment Management Acts
- 5. Identify ambient air quality

III Syllabus: (Total Teaching Hours : 45)

Unit I Introduction

9 Hrs

9 Hrs

- 1. The Environment, Interaction of Humans and Environment.
- 2. Role of an engineer in Environmental improvement. Present Environmental Scenario: socio economic studies , buffer zone , demographic profile.
- 3. Environmental quality, air environment, micro-meteorology, dust environment, water quality, noise level.

Unit II Sources of Pollution in Cement Industry 9 Hrs

- 1. Air Pollution Sources, Ambient Air Quality, Fugitive dust, Point Source Green House Gas, particulate matter (PM), SO2, NOx, CO, HCl, HF, Heavy Metals, Dioxins & Furans, TOC, TVOC etc.
- 2. Water pollution Sources, Consumption, waste water generation, storm water.
- 3. Noise pollution Sources, Solid and Hazardous Waste utilization.

Unit III Environmental Impact Assessment 9 Hrs

- 1. Impact on socio economic factors, Impact due to land degradation, impact on topography and drainage, impact due to solid waste, impact due to coal stocks, impact on flora and fauna.
- 2. Impact on safety, impact on environmental quality, ambient air quality, impact on water quality, impact on noise levels.
- 3. Mathematical modelling for dispersion of air pollutants, Battelle Environmental Evaluation System.

Unit IV Environment Management Act

- 1. Introduction to various Environmental Act & Regulations, Environment Protection Act 1986, Water (Prevention and Control of Pollution) act, Water (Prevention and Control of Pollution) Cess act, Air (Prevention and Control of Pollution) act,
- 2. Forest (Conservation) Act, Hazardous Waste (Management, Handling and trans boundary movement) Rules, Solid Waste Management Rules, Corporate Responsibility for ENV Protection (CREP).

3. Environment Management Tools :EMS – ISO 14001, Environmental Audit / Statement, Clean Development Mechanism (CDM).

Unit V Environmental Management Plan 9 Hrs

- 1. Socio economic factors, rehabilitation, compensatory afforestation, welfare measures, environmental quality, ambient air quality, green belt development, water quality, noise levels control measures,
- 2. Occupational health, disaster and hazard management.
- 3. Post Project environmental monitoring programme : organisational structure , monitoring scheme, equipments required for monitoring , budgetary provision for EMP.

COURSE 4: EIA AND EMP OF CEMENT PLANT

Practical Credits: 1 2 hrs/week

IV.Skills Outcomes:

- 1. Estimation of Hardness of water
- 2. Perform volumetric titrations
- 3. Select suitable Indicator
- 4. Operate PH meter
- 5. Use Conductometer

V. Practical Syllabus: Hours: 30. (2 Hrs/ Week)

- 1. Estimation of Hardness of water
- 2. Determination of Alkalinity of water
- 3. Determination of Acidity of water
- 4. Operate and calibrate of pH meter
- 5. Determine of Conductivity of water

VI. References:

- 1. Environmental Pollution Control Engineering: C S Rao
- 2. Air Pollution: M N Rao, H.V.N. Rao
- 3. Environmental Engineering: Peavy and Rowe
- 4. Air Pollution Control by S P Mahajan, T.V. Ramachandra
- 5. Pollution Control in Process Industries : S P Mahajan

- 1. Assignments
- 2. Health camps
- 3. Quiz
- 4. Poster Presentation
- 5. Eco clubs

COURSE 5: PYRO PROCESS IN CEMENT INDUSTRY

Theory Credits: 3 3 hrs/week

I Learning Objectives:

- 1. Classify various types of clinker coolers in cement manufacturing.
- 2. Equipment operation and processes such as the Kiln, Preheater, and process fans.
- 3. Explain thermal heat calculations, sizing of kiln.

II Learning outcomes:

Students after successful completion of the course will be able to...

- 1. Evaluate kiln parameters
- 2. Categorise pre-heaters and pre-calciners
- 3. Operate 6 process fans
- 4. Differentiate 4 clinker coolers
- 5. Explain grinding aids

III Syllabus: (Total Teaching Hours : 45)

Unit I Types of Preheaters

9 hrs

- 1. Types of Preheater, Comparison, selection of different stages(4/5/6) preheaters.
- 2. Pre-calciners- Features, advantages and dis advantages of pre-calciners. Primary air, Secondary air, Tertiary air.
- 3. Optimization of kiln output, factors affecting the kiln output. Determination of parameters of kiln evaluation: thermal loading, volumetric loading, % filling, kiln bypass system.

UNIT-II Types of kiln

9 hrs

- 1. Rotary Kiln, different type of clinkerisation process. Advantages and Disadvantages of each process; Dry process, Semidry process. Wet Process; Long wet process Kiln.
- 2. Introduction to preheater and pre-calcinator. Modern rotary kiln, Thermal heat calculation, sizing of kiln.
- 3. Heat balance of kiln, air balance of kilns, inlet seal, Methods used to feed raw meal in the kilns.

UNIT-III Process Fans

9 hrs

- 1. Purpose of fan, types of fans, their application.
- 2. Concept of pressure, velocity pressure, total pressure in an air stream.
- 3. Characteristic curves of fans, fan laws, comparison and selection of principal types of fans.

UNIT-IV Cooling of Clinker

- 1. Purpose of clinker cooling, types of coolers: Grate Cooler, Reciprocating grate cooler, History, Design features of modern coolers, Cooler control, Cooler de dusting, Nonventilating cooler, Travelling grate cooler.
- 2. Rotary Cooler: General design, Cooling performance, Advantages / Disadvantages. Planetary Cooler: General design features, Internal heat transfer equipment, Heat transfer and efficiency, Enhanced cooling, Advantages / Disadvantages.
- 3. Other Systems: g-cooler, Shaft cooler Comparison of Coolers: Range of application, Operating data and heat balance, Capital and operating costs.

UNIT -V Clinker Storage

- 1. Method of clinker storage: Silos and Gantry, Clinker Shipment. Gypsum and other additives, grinding aids. Types of cement grinding system and their comparison,
- 2. Cement conveying to storage, single and multi component silos.
- 3. Cement packing & Transportation, Bulk Loading.

COURSE 5: PYRO PROCESS IN CEMENT INDUSTRY

Practical Credits: 1 2 hrs/week

IV.Skills Outcomes:

On successful completion of this practical course, student shall be able to:

- 1. Handle Hot Air Oven
- 2. Use Silica Crucibles
- 3. Perform filtration process
- 4. Estimate Iron Oxide
- 5. Handle Muffle Furnace

V. Practical Syllabus: Hours: 30. (2 Hrs/ Week)

- 1. Determination of Loss on Ignition of Kiln Feed.
- 2. Estimation of SiO₂ present in Kiln feed
- 3. Determination of Al₂O₃ present in Kiln feed
- 4. Determination of Fe₂O₃ present in Kiln feed
- 5. Estimation of CaO present in Kiln feed

VI. References:

- 1. Cement Data Book: W. H Duda, Verlag G mBh, Berlin.
- 2. Kiln System: Process Technology: Cement Seminar, Holderbank
- 3. Precalcining System: Process Technology: Cement Seminar, Holderbank
- 4. Clinker Cooler: Process Technology: Cement Seminar, Holderbank
- 5. Rotary Kilns: Transport Phenomena and Transport Processes (2nd edition) by A.A. Boateng

- 1. Assignments
- 2. Mini project
- 3. Poster presentation
- 4. Cement Industry Rotary Kiln Visit
- 5. Interaction with Cement Industry Experts

COURSE 6: SPECIAL CEMENTS AND PERFORMANCE OF CEMENT

Theory Credits: 3 3 hrs/week

I Learning Objectives:

- 1. Know various types of special cements manufacturing, properties & its application.
- 2. To get a broad perspective of special cement performance.
- 3. To understand durability consideration of concrete

II Learning outcomes:

Students after successful completion of the course will be able to...

- 1. Describe Cement Kilns developments
- 2. Classify kilns based on reaction zone length
- 3. Operate and control the temperatures of kiln at multiple locations
- 4. Explain preheater, kiln tube and cooler design aspects
- 5. Identify internal cycles of inorganic elements

III Syllabus: (Total Teaching Hours: 45)

Unit I Characteristics of Cementious Materials

9 Hrs

- 1. Characteristic of fly ash, Granulated blast furnace slag, other Pozzolanic materials for cement production.
- 2. Introduction to Geopolymeric cement, alternate Cementious materials other than OPC
- 3. Performance of Blended Cement, advantages of Portland Pozzolana Cements (PPC) and Portland Slag Cement (PSC).

Unit II Special Cements

9 Hrs

- 1. Introduction, Sorel cement, Very High Strength Cement, Decorative Portland Cements, Chemical Cements.
- 2. Special Portland Type Cements, Calcium Aluminate Cement
- 3. Production of Low Energy Cements, Gypsum Plaster Cement, Portland Cements with Improved Reactivity, Alkali Activated Slags and Other Alumino Silicates.

Unit III Performance requirements

9 Hrs

- 1. Performance Requirement of cement: Concrete and mortars, introduction to various infrastructure and use of cement.
- 2. Requirement of setting, strength and durability of different concrete constructions, effect of chemical composition and physical characteristic of cement on performance.
- 3. Fineness and particle size distribution, tailoring performance of cements.

Unit IV Operational Problems

- 1. Operational Problems Cause and measure to solve them- Coating, ball formation, cyclone jamming, other emerging conditions.
- 2. Wear in cement plant- abrasion, erosion, corrosion, causes and control measures.
- 3. Durability consideration of concrete, sulphate attacks, corrosion of reinforcing steel in concrete, attack by acid and other aggressive agencies.

Unit V Maintenance

- 1. Maintenance strategies, preventive maintenance, condition monitoring for predictive Maintenance.
- 2. Check for kiln alignment and shell ovality, annual maintenance, shutdown Maintenance.
- 3. Economic life of refractories , and machineries, check lists, shutdowns, upset kiln conditions- causes and controls.

COURSE 6: SPECIAL CEMENTS AND PERFORMANCE OF CEMENT

Practical Credits: 1 2 hrs/week

IV.Skills Outcomes:

On successful completion of this practical course, student shall be able to:

- 1. Use filtration techniques
- 2. Operate Muffle furnace
- 3. Perform Separation techniques
- 4. Perform various weighing techniques
- 5. Perform various titration methods

V. Practical Syllabus: Hours: 30. (2 Hrs/ Week)

- 1. Determination of CaO in Cement
- 2. Estimation of Al₂O₃ present in Cement
- 3. Determination MgO present in Cement
- 4. Calculation of SO₃ present in Cement
- 5. Determination of Chlorides present in Cement

VI. References:

- 1. Chemistry of Cement and Concrete: F M Lea, Arnold, London
- 2. Properties of Concrete: Neville, A.M. Longmans.
- 3. Cement Industry Data Book, CAM, New Delhi
- 4. World Cement Directory: CEMBUREAU
- 5. Cement Data Book: W. H Duda, Verlag G m Bh, Berlin

- 1. Seminars
- 2. Construction Sites Visit
- 3. Industry lab Visit
- 4. Quiz
- 5. Assignments